Engineering the gut microbiota to treat hyperammonemia.
نویسندگان
چکیده
Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.
منابع مشابه
The Pharmabiotic Approach to Treat Hyperammonemia
Ammonia is constantly produced as a metabolic waste from amino acid catabolism in mammals. Ammonia, the toxic waste metabolite, is resolved in the liver where the urea cycle converts free ammonia to urea. Liver malfunctions cause hyperammonemia that leads to central nervous system (CNS) dysfunctions, such as brain edema, convulsions, and coma. The current treatments for hyperammonemia, such as ...
متن کاملFecal transplant to mitigate hyperammonemia and hepatic encephalopathy in animal models.
The paper by Shen, et al. reports on efforts to engineer the gut microbiota to treat hyperammonemia by decreasing the levels of urease positive gut bacteria.1 After treatment of mice with oral antibiotics and PEG to deplete indigenous bacteria, mice were inoculated with a consortium of 8 bacteria with low urease gene content. This new gut microbiota was relatively stable for up to 120 days. The...
متن کاملImpaired Gut-Liver-Brain Axis in Patients with Cirrhosis
Cirrhosis is associated with brain dysfunction known as hepatic encephalopathy (HE). The mechanisms behind HE are unclear although hyperammonemia and systemic inflammation through gut dysbiosis have been proposed. We aimed to define the individual contribution of specific gut bacterial taxa towards astrocytic and neuronal changes in brain function using multi-modal MRI in patients with cirrhosi...
متن کاملCorrelation of gut microbiota composition with colon adenomatous polyps
Microbiota is a collection of microorganisms that live in the oral cavity, respiratory tract and intestine of multicellular organisms. Microbiota exerts numerous physiological and pathological effects on the organism in which it resides. Increasing attention has been directed to the host-microbiota interaction, which is highly relevant to the development of carcinogenesis. Changes in the compos...
متن کاملInteraction between Intestinal Microbiota and Serotonin Metabolism
Gut microbiota regulates the production of signaling molecules, such as serotonin or 5-Hydroxytryptamine: 5-HT in the host. Serotonin is a biogenic amine that acts as a neurotransmitter in the gut and brain. There is a perfect interaction between human gastrointestinal microbiota and the serotonin system. The gut microbiota plays an important role in the serotonin signaling pathways through the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 125 7 شماره
صفحات -
تاریخ انتشار 2015